Mapping from space

Earth Observation and Machine Learning

Clare Rowland

With contributions from Dan Morton, Chris Marston, Nye O'Neil, Paul Scholefield, Luis Carrasco, Merryn Hunt and Alan Blackburn

Contents

Random forest for image classification

Random forest regression

Quantile Regression Forests

A recipe for EO and ML

Earth Observation data

• Satellite

• Aerial photographs

Training data

- Combine harvester
- Field survey
- Digitised

Random Forest for image classification (1)

Aim: to develop methods for mapping urban creep

Motivation: get estimates of urban creep for Scotland

Test area: Edinburgh

Data: aerial photography

Map: urban creep, urban expansion, plus new roads and urban decrease/regeneration

2005

2015

Rowland, C.S., Scholefield, P., O'Neil, A., & Miller, J., (2019) Quantifying rates of urban creep in Scotland: results for Edinburgh between 1990, 2005 and 2015, <u>CREW</u>, Aberdeen, 45pp

12km

Urban Creep in Edinburgh

1990

2015

Hydrological Impact of urban creep **potentially high** :

- large numbers of small changes
- unplanned, unmanaged
- large cumulative effect

Random Forest Classification

Aerial photography

Segmented photography

Manually digitised Training areas

UK Centre for Ecology & Hydrology

Random Forest Classification

Rowland, C.S., Scholefield, P., O'Neil, A., & Miller, J., (2019) Quantifying rates of urban creep in Scotland: results for Edinburgh between 1990, 2005 and 2015, <u>CREW</u>, Aberdeen, 45pp

Urban creep in Edinburgh 1990 - 2015

Building age

Knowledge...

- Urban creep is spatially and temporally variable
- Urban creep rates vary with property age and structure
- Urban creep can be mapped from aerial photography

CREW

CENTRE OF EXPERTISE FOR WATERS

Rowland, C.S., Scholefield, P., O'Neil, A., & Miller, J., (2019) Quantifying rates of urban creep in Scotland: results for Edinburgh between 1990, 2005 and 2015, <u>CREW</u>, Aberdeen, 45pp

Random Forest for Image Classification (2)

Land Cover Map (1990, 2000, 2007, 2015, 2017, 2018, 2019)

Carrasco, L., O'Neil, A.W., Morton, R.D. and Rowland, C.S., (2019) Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2, And Landsat 8 For Land Cover Mapping with Google Earth Engine, Remote Sensing, 11(3), 288, https://doi.org/10.3390/rs11030288

Random Forest Regression (1)

Aerial photo

High resolution classification

Bare peat Blue/green

Recovering peat Off brown

Exposed rock Red

Vegetation

Green

Training data and Random Forest Regression

Sentinel-2 image

Estimated % bare peat

Random Forest Regression (2)

Data from:

And from:

Random Forest Regression

UK Centre for Ecology & Hydrology

Achieving Sustainable Agricultural Systems

Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., Rowland, C.S., (2019) High resolution wheat yield mapping using Sentinel-2, *Remote Sensing of Environment*, **233**, 111410

Quantile Regression Forest: Grassland Condition

May 2007

June 2007

Grassland condition

Black – no grass Dark grey – low NPP values Light grey – high NPP values

ﷺ Department for Environment Food & Rural Affairs

Uncertainty information

A recipe for EO and ML

• Satellite

• Aerial photographs

Training data

- Combine harvester
- Field survey
- Digitised

Summary

- Random Forest classification and regression are useful 1. tools for deriving EO data sets
- Success depends on the quality (and relevance) of the 2. EO data & the quality of the training data (accuracy + distribution of the training sample)
- The spatial distribution of the training data is a key 3. issue when dealing with large spatial data sets e.g. EO data
- Need better techniques for understanding when 4. satellite data is within/beyond the bounds of the training data

