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A recipe for EO and ML

Earth 
Observation data

• Satellite
• Aerial photographs

Training data
• Combine harvester
• Field survey
• Digitised

Machine 
Learning Model

• Random Forest Classification
• Random Forest Regression
• Quantile Regression Forests

Map • Land cover
• Land cover change

Knowledge
• Stock
• Rates of change
• Location of change
• Types of change



The Urban Creep Project

Aim: to develop methods for mapping urban 

creep

Motivation: get estimates of urban creep for 

Scotland

Test area: Edinburgh

Data: aerial photography 

Map: urban creep, urban expansion, plus new 

roads and urban decrease/regeneration

Random Forest for image classification (1)

Rowland, C.S., Scholefield, P., O’Neil, A., &  Miller, J., (2019) 
Quantifying rates of urban  creep in Scotland: results for 
Edinburgh between 1990,  2005 and 2015, CREW, Aberdeen, 45pp

https://www.crew.ac.uk/sites/www.crew.ac.uk/files/sites/default/files/publication/Quantifying%20rates%20of%20urban%20creep%20for%20Scotland%20MAIN%20REPORT.pdf
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Conservatory & patio

Parking space & 
extension at back

Conservatory

Housing
extension

1990 2015

Hydrological Impact of urban creep -
potentially high :
• large numbers of small changes 
• unplanned, unmanaged
• large cumulative effect

Urban Creep in Edinburgh
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Random Forest Classification

Manually digitised Training areas

Aerial photography

Random Forest 
Classification

Rowland, C.S., Scholefield, P., O’Neil, A., &  Miller, J., (2019) 
Quantifying rates of urban  creep in Scotland: results for 
Edinburgh between 1990,  2005 and 2015, CREW, Aberdeen, 45pp

Segmented photography

https://www.crew.ac.uk/sites/www.crew.ac.uk/files/sites/default/files/publication/Quantifying%20rates%20of%20urban%20creep%20for%20Scotland%20MAIN%20REPORT.pdf


Urban creep in Edinburgh 1990 - 2015

Rate of urban creep for different 
building ages

Building age



• Urban creep is spatially and 
temporally variable

• Urban creep rates vary with 
property age and structure

• Urban creep can be mapped 
from aerial photography

Between 1990 - 2015
Urban creep: 6.92ha/yr
8.5 football pitches/yr

Or, 15 football pitches 
when urban expansion 
is included

Knowledge…

Rowland, C.S., Scholefield, P., O’Neil, A., &  Miller, J., (2019) 
Quantifying rates of urban  creep in Scotland: results for 
Edinburgh between 1990,  2005 and 2015, CREW, Aberdeen, 45pp

https://www.crew.ac.uk/sites/www.crew.ac.uk/files/sites/default/files/publication/Quantifying%20rates%20of%20urban%20creep%20for%20Scotland%20MAIN%20REPORT.pdf
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Random Forest for Image Classification (2)

Carrasco, L., O’Neil, A.W., Morton, R.D. and Rowland, C.S., (2019) 

Evaluating Combinations of Temporally Aggregated Sentinel-1, 

Sentinel-2, And Landsat 8 For Land Cover Mapping with Google Earth 

Engine, Remote Sensing, 11(3), 288, 

https://doi.org/10.3390/rs11030288

Land Cover Map (1990, 2000, 
2007, 2015, 2017, 2018, 2019)

Land Cover Change 1990 - 2015

https://doi.org/10.3390/rs11030288


Sentinel-2 image                

Aerial photo High resolution classification

Bare peat
Blue/green

Recovering peat
Off brown

Exposed rock
Red

Vegetation
Green 

Estimated % bare peat

Training data and 
Random Forest 

Regression

Random Forest Regression (1)
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Random Forest Regression (2)

Assist Achieving Sustainable 
Agricultural Systems

Data from:

And from:

Random 
Forest 
Regression

Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., Rowland, C.S.,  (2019)  High resolution 
wheat yield mapping using Sentinel-2, Remote Sensing of Environment, 233, 111410
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Countryside Survey data

Satellite data

Quantile Regression Forest: Grassland Condition

UK-SCAPE



Grassland condition
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Black – no grass
Dark grey – low NPP values
Light grey – high NPP values

UK-SCAPE
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Uncertainty information

UK-SCAPE
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A recipe for EO and ML

Earth 
Observation 

data

• Satellite
• Aerial photographs

Training data
• Combine harvester
• Field survey
• Digitised

Machine 
Learning Model

• Random Forest Classification
• Random Forest Regression
• Quantile Regression Forests

Map • Land cover
• Land cover change

Knowledge
• Stock
• Rates of change
• Location of change
• Types of change



Summary
1. Random Forest classification and regression are useful 

tools for deriving EO data sets

2. Success depends on the quality (and relevance) of the 

EO data & the quality of the training data (accuracy + 

distribution of the training sample)

3. The spatial distribution of the training data is a key 

issue when dealing with large spatial data sets e.g. EO 

data

4. Need better techniques for understanding when 

satellite data is within/beyond the bounds of the 

training data
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